Original Article

Pilot study to test inhaled nitric oxide in cystic fibrosis patients with refractory Mycobacterium abscessus lung infection

Lea Bentur a,b,⁎, Michal Gur a,b, Moshe Ashkenazi c,g, Galit Livnat-Levanon d, Marko Mizrahi e, Asher Tal e, Abdi Ghaffari e, Yuval Geffen f, Micha Aviram g, Ori Efrati c,h

a Department of Pediatrics and Pulmonology, Rambam Health Care Campus, POB 9602, Haifa, Israel
b Department of Microbiology, Rambam Health Care Campus, POB 9602, Haifa, Israel
c Department of Pulmonology and Critical Care Medicine, Sheba Medical Center, Tel-Hashomer, Israel
d Department of Pediatric Pulmonology, Lady Davis Carmel Medical Center, Haifa, Israel
e Pediatric Pulmonary Institute and CF Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
f AIT Therapeutics Inc, Garden City, NY 11530, USA
g Pediatric Pulmonology Unit and CF Center, Lady Davis Carmel Medical Center, Haifa, Israel
h Technion-Israel Institute of Technology, Haifa, Israel

⁎ Corresponding author at: Lea Bentur, Pediatric Pulmonology Institute, Ruth Rapaport Children's Hospital, Rambam Health Care Campus, POB 9602, Haifa, 31092, Israel.
E-mail address: l_bentur@rambam.health.gov.il (L. Bentur).

Background: Airways of Cystic Fibrosis (CF) patients are Nitric Oxide (NO) deficient which may contribute to impaired lung function and infection clearance. Mycobacterium abscessus (M. abscessus) infection prevalence is increasing in CF patients and is associated with increased morbidity and mortality. Here, we assess the safety and efficacy of intermittent inhaled NO (INO) as adjuvant therapy in CF patients with refractory M. abscessus lung infection.

Methods: A prospective, open-label pilot study of INO (160 ppm) administered five times/day during hospitalization (14 days), and three times/day during ambulatory treatment (7 days) was conducted. The primary outcome was safety measured by NO-related adverse events (AEs). Secondary outcomes were six-minute walk distance (6MWD), forced expiratory volume in 1 s (FEV1), and M. abscessus burden in airways.

Results: Nine subjects were recruited, INO at 160 ppm was well-tolerated and no NO-related SAEs were observed during the study. Mean FEV1 and 6WMD were increased relative to baseline during NO treatment. M. abscessus culture conversion was not achieved, but 3/9 patients experienced at least one negative culture during the study. Mean time to positivity in M. abscessus culture, and qPCR analysis showed reductions in sputum bacterial load.

Conclusions: Intermittent INO at 160 ppm is well tolerated and safe and led to increases in mean 6MWD and FEV1. INO exhibited potential antibacterial activity against M. abscessus. Further evaluation of secondary endpoints in a larger cohort of CF patients is warranted to demonstrate statistical significance.

© 2019 The Authors. Published by Elsevier B.V. on behalf of European Cystic Fibrosis Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Lung damage induced by chronic infection and inflammation is a significant cause of morbidity and mortality in Cystic Fibrosis (CF) patients [1]. In recent years, the prevalence of Non-tuberculous Mycobacteria (NTM) lung infection has increased in these patients. NTM infections, especially Mycobacterium Abscessus Complex (MABSC), are complicated to treat due to biofilm formation and acquisition of multiple drug-resistance mechanisms. Prolonged and intense antibiotic treatment regimens are associated with high rates of failure, recurrence of infection, and adverse events (AEs) [2]. Therefore, currently M. abscessus is an incurable chronic infection in most CF patients.

Nitric Oxide (NO), formed from l-arginine by NO synthase (NOS) has been shown to play an essential role in a variety of biological processes in the lung, including host-defense against pathogens, smooth muscle relaxation, and the inhibition of airway smooth muscle cell proliferation.
relaxation, bronchodilation, and inflammation [3]. In CF patients, the elevation of airway NO level is closely linked to improvement in lung function [4-6]. Indeed, administration of L-arginine inhalation therapy resulted in a transient improvement in pulmonary function of CF patients [7,8]. However, the treatment of CF patients with low-dose (100 ppb to 40 ppm) inhaled nitric oxide (iNO) had no immediate effect on lung function [9].

At higher doses (160–200 ppm), exogenous NO has been shown to exert potent antimicrobial activity in preclinical models against a broad range of bacteria including Mycobacterium smegmatis and drug-resistant pathogens [10–15]. An intermittent delivery protocol (30 min of 160 ppm iNO every 4 h) was developed in order to overcome potential AEs associated with continuous exposure to high-dose iNO such as methemoglobinemia. Administration of intermittent high-dose NO at 30-min cycles of 160 ppm for 5 days was shown to be safe and well-tolerated in healthy adults and CF patients [16,17]. Our group previously reported a prospective compassionate treatment in two CF patients with adjunctive iNO therapy at 160 ppm for 30 min, five times/day for up to 26 days. Reductions in sputum M. abscessus load and improvement in lung function and 6MWD were found [18]. In the present study, we evaluated the safety and tolerability of intermittent high-dose iNO (160 ppm) in CF patients with refractory M. abscessus lung infection.

2. Materials and methods

2.1. Study design

This prospective, open-labeled, multi-center trial included nine CF patients with refractory M. abscessus lung infection admitted to three medical centers in Israel. This study was conducted in accordance with the amended declaration of Helsinki. Local institutional review boards approved the protocol, and written informed consent was obtained from all patients (IRB’s: RMB 0161-2017, SMC – 4126-17, SOR – 0240-17). Participants were aged ≥6 and < 65 years, with a history of at least six months of chronic M. abscessus lung infection prior to screening, FEV1 > 30%, able to perform 6MWD test (~700 m). Key exclusion criteria included pregnancy, diagnosis of methemoglobinemia (~2%), cardiac disease, pulmonary hypertension (documented by previous echography) and/or high blood pressure, significant prior hemoptysis (>30 ml blood in 24 h during last 30 days before enrollment), history of lung transplant, continuous oxygen supplementation and pulmonary tuberculosis. Detailed inclusion and exclusion criteria are summarized in Table S1.

2.2. Safety

The primary outcome of this study was safety and tolerability to intermittent exposure to 160 ppm iNO by monitoring blood MetHb and inspired NO2 levels as well as any NO-related AEs (see Table 2). Blood MetHb (safety threshold <7%) and mean peripheral oxygen saturation (SpO2, safety threshold ~89%) levels were continuously monitored during treatments using a co-oximeter (RAD57 or RAD87, Masimo, Irvine, CA, USA). Vital signs, physical examination, hematological and coagulation markers were also assessed throughout the study.

2.3. Efficacy measurements

Spirometry tests (FEV1 and FVC) and 6MWD test were performed at screening, baseline (day 1), during treatment (weeks 1, 2 and 3) prior to first daily NO treatment, and during follow-up (weeks 7 and 11). Spirometry was performed using a KoKo spirometer (n-Spire Healthcare, Inc, Longmont CO, USA) in accordance with the American Thoracic Society (ATS) and European Respiratory Society Task Force [20]. Results are presented as absolute values and predicted percent derived from Polgar and Quanjer [21]. 6MWD test was performed according to ATS guidelines for 6MWD at screening, baseline (day 1) prior to daily NO treatments, during treatment (weeks 1, 2, and 3) and each follow-up visit [22].

Sputum specimens were assessed at screening, baseline (day 1), during treatment (week 1, 2 and 3), and during follow-up visits (week 7 and 11). During screening, M. abscessus was identified via solid and liquid culture (BD BACTEC MGIT 960, Becton Dickinson, USA; Lowenstein Jensen/Middle brook 7H10 broths, Hy-Laboratories, Israel) and via Polymerase Chain Reaction (PCR) based on rpoB gene sequence. M. abscessus load (CFU/ml) in sputum was quantitatively assessed by Time to Positivity in liquid culture (BD BACTEC MGIT 960; from sample collection to positive culture) and by quantitative PCR (qPCR), as previously described [19]. Microbial loads (CFU/ml) of Pseudomonas aeruginosa (P. aeruginosa) in sputum were evaluated by plating on solid agar (Chocolate and MacConkey agar) following serial dilutions using sterile saline solution. Plates were incubated at 37 degrees (5% CO2) for 48 h before CFU count.

2.4. Nitric oxide treatment

All patients received intermittent inhalations (30-min each, every 4h) of 160 ppm NO combined with O2/Air blend in addition to standard of care for CF-NTM pulmonary disease including antibiotic treatment for M. abscessus infection. NO treatments were administered for 21 days – five times/day during hospitalization (14 days), and three times/day during the ambulatory period (Day 15 to 21). Two monthly follow-up visits were conducted (once a month). Inhaled NO was delivered in a controlled manner via designated NO tubing and flow meters into the subject’s inhalation facemask as described previously [18]. NO (ppm), NO2 (ppm) and Fraction of inhaled O2 (%) concentrations delivered were continuously monitored using a dedicated AeroNox monitoring system (International Biomedical, USA). Inspired NO2 was measured at a point closest to the patient mask and separated for exhaled NO by a one-way valve to avoid measuring exhaled NO2.

2.5. Statistical analysis

No formal sample size calculation was performed, as the study endpoints were not expected to show statistical significance. Results were expressed as descriptive parameters, mean ± SD or 95% confidence intervals (CI). Binary comparisons were made with Wilcoxon test for paired and Mann-Whitney for non-paired tests, where appropriate. All statistical tests were conducted using SAS® version 9.3 or higher (SAS Institute, Cary North Carolina).

3. Results

3.1. Patients and treatment

Nine out of fourteen recruited patients with a confirmed diagnosis of CF and pulmonary M. abscessus infection were enrolled in the study (Table S1). The baseline demographics are summarized in Table 1. All nine patients completed the iNO (160 ppm) treatment.

3.2. Inhaled NO safety

The primary endpoint of this pilot study was safety and tolerability of intermittent high-dose iNO in NTM-CF patients. Study treatment was well-tolerated and there were no iNO-related SAEs reported. A total of twenty-five AEs were reported, with three patients experiencing five possible/probable treatment-related AEs (Table 2). All iNO-related AEs were minor, transient, and patients recovered to continue the subsequent scheduled treatment. There was one iNO-unrelated SAE: papilledema, which was diagnosed due to blurred vision 30 days post-treatment (during follow up period). Patient’s CT was normal, no retinal bleeding observed and the condition was resolved.
In this study, out of 817 total inhalations, only one transient episode of elevated MetHb (7.1%) was reported, which recovered to baseline levels before next scheduled treatment. Mean MetHb levels post iNO treatment (3.27 ± 1.0%) remained well below the 7% threshold across treatment (3.27 ± 1.0%) remained well below the 7% threshold across all patients with no reported incidences of hypoxemia (SpO2 \(\leq 85\% \)), Fig. 1, panel A. Furthermore, MetHb peak levels in all patients returned to baseline before subsequent daily NO inhalation and at follow-up visits (Fig. 3A). This observation correlated with qPCR estimate of M. abscessus culture conversion (three consecutive negative cultures) was not achieved in this study. Time to positivity assay (BACTEC MGIT 960) was used to quantify M. abscessus burden in sputum samples. The median time to positivity in M. abscessus liquid culture increased to minimum and maximum values.

<table>
<thead>
<tr>
<th>Event</th>
<th>n (pts) / n (event)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common cold</td>
<td>1/1</td>
<td></td>
</tr>
<tr>
<td>Pulmonary exacerbation</td>
<td>5/6</td>
<td>Possibly NO-related, resolved</td>
</tr>
<tr>
<td>Dizziness</td>
<td>1/2</td>
<td>Probably NO-related, resolved</td>
</tr>
<tr>
<td>Dry mouth</td>
<td>1/1</td>
<td>Possibly NO-related (n = 1), minor, resolved</td>
</tr>
<tr>
<td>Hemoptysis</td>
<td>3/4</td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal pain</td>
<td>1/1</td>
<td></td>
</tr>
<tr>
<td>Pain in extremity</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>1/1</td>
<td></td>
</tr>
<tr>
<td>Vomiting</td>
<td>2/2</td>
<td></td>
</tr>
<tr>
<td>Fever</td>
<td>2/3</td>
<td></td>
</tr>
<tr>
<td>MethHb elevation</td>
<td>1/1</td>
<td>Probably NO-related (7.1%), transient, resolved, SAE</td>
</tr>
<tr>
<td>Papilledema (blurred vision)</td>
<td>1/1</td>
<td></td>
</tr>
<tr>
<td>Patients with probable/possible NO-related AEs</td>
<td>3</td>
<td>minor, resolved</td>
</tr>
<tr>
<td>Patients with NO-related SAEs</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Event: AE description; n (pts): number of patients who experienced each AE; n (event): total number of AEs per event recorded during the study. Relation to study treatment is described where appropriate.

\(^* \) Dry mouth is a common occurrence during inhalation therapy without supplementation and not necessarily caused by iNO.
at 11-week follow-up with a third patient showing a \(> 2 \log_{10} \) reduction (data not shown).

4. Discussion

In this prospective open-labeled pilot study, we assessed the safety and tolerability of intermittent iNO at 160 ppm administered as an adjunct to antibiotic therapy in CF patients with chronic \(M. \) abscessus infection. Inhaled NO therapy at 160 ppm was found to be safe and well-tolerated, with no reports of iNO-related SAEs. While the study was not powered to achieve statistical significance in secondary outcomes, increases in the overall mean values of FEV1, FVC, and 6MWD were observed during iNO treatment.

Low-dose of iNO (below 80 ppm) is FDA-approved for treating neonates with persistent pulmonary hypertension with minimal pulmonary and systemic toxicity [23]. However, there is limited evidence on the safety of high-dose iNO in CF patients. Two previous pilot studies evaluating the safety of high-dose iNO (160 ppm) did not report any
significant NO-related AEs [16,17]. As prolonged treatment with iNO may be required to achieve a clinically meaningful reduction in lung bacterial load, especially in advanced CF patients with persistent NTM infection, we explored the safety of iNO treatment for up to 21 days. The absence of NO-related SAE in our study is consistent with previous reports. Furthermore, all possible NO-related AEs (5 out of total 25 AEs) were minor, resolved within 3 h, and patients continued to receive subsequent NO inhalation in all cases.

A large portion of iNO combines with oxyhemoglobin to form methemoglobin (MetHb) and nitrates. Elevated MetHb or methemoglobinemia (defined as ≈7% results in impaired oxygen delivery to tissues and is monitored as the key marker for NO systemic toxicity [24,25]. Deppisch et al. reported a mean MetHb level of 2.7 ± 0.4% during 5-day treatment with intermittent iNO at 160 ppm for 30 min, three times daily [17]. In this study, the mean MetHb levels for individual patients were well below the safety threshold of 7% and in line with previous findings. More importantly, all patients exhibited a steady and consistent recovery to baseline MetHb levels after each 30-min intermittent iNO treatment.

A potential side-effect of iNO treatment could be its effect on bleeding diathesis, even though the prior studies have yielded conflicting results. Several studies treating healthy volunteers with 30–80 ppm iNO for up to 30 min demonstrated limited effects on bleeding time and hemostasis and of little clinical significance [26–29]. While other investigators have reported significant inhibition of platelet aggregation or prolonged bleeding time in healthy volunteers or patients receiving iNO [30–35]. Therefore, one of the key exclusion criteria in our study was significant hemoptysis, defined as >30 ml blood in 24 h, in the previous month from enrolment. The hemoptysis events experienced during this study were minor and self-limited, most likely due to the intermittent NO inhalation protocol. Nevertheless, we recommend that platelets function and bleeding time should be assessed in future iNO studies and patients monitored closely for coagulation and bleeding problems.

Although NO is a naturally produced signaling molecule with a short half-life (seconds), the indirect systemic effects of exogenous NO therapy should be considered. Inhaled NO is used as rescue therapy for severe hypoxemia in patients with Acute Respiratory Distress Syndrome (ARDS) [23]. Systemic reviews of ARDS patients receiving iNO rescue therapy suggest an association between iNO therapy and increased risk of renal dysfunction, especially at high cumulative-doses of iNO and in older aged patients (≥65 yr) [36,37]. Renal dysfunction in these trials was usually defined as an excess of creatinine level (2–3.5 mg/dl) or the need for renal replacement therapy. It is important to note that in a recent safety study of intermittent high-dose iNO (160 ppm) in CF patients, authors did not observe a significant increase in the serum creatinine level during iNO treatment or follow-up period and did not report any adverse event related to renal function [17]. It is plausible that intermittent iNO regimen minimizes the systemic side-effects of high-dose iNO compared to continuous iNO studies in ARDS patients. Nonetheless, as many concomitant medications in the treatment of CF patients have potential nephrotoxicity, we recommend monitoring renal function by measuring creatinine levels and creatinine clearance in future iNO studies.

Another systemic effect that should be discussed is the potential mutagenic activity of iNO following sustained exposures to high concentrations. NO has complex and conflicting effects in cancer. Chronic exposure to NO can mediate damage to DNA or hinder DNA repair mechanisms to promote tumorigenesis. However, NO production also acts as a marker for nitrosative stress in future studies.

Pulmonary function in CF patients has been closely associated with airway NO production, as patients with improved function show higher exhaled NO and sputum NO2/NO3 levels (NO by-products) [4,5]. Nevertheless, all NO-related AEs (5 out of total 25 AEs) were minor, resolved within 3 h, and patients continued to receive subsequent NO inhalation in all cases.

A potential side-effect of iNO treatment could be its effect on bleeding diathesis, even though the prior studies have yielded conflicting results. Several studies treating healthy volunteers with 30–80 ppm iNO for up to 30 min demonstrated limited effects on bleeding time and hemostasis and of little clinical significance [26–29]. While other investigators have reported significant inhibition of platelet aggregation or prolonged bleeding time in healthy volunteers or patients receiving iNO [30–35]. Therefore, one of the key exclusion criteria in our study was significant hemoptysis, defined as >30 ml blood in 24 h, in the previous month from enrolment. The hemoptysis events experienced during this study were minor and self-limited, most likely due to the intermittent NO inhalation protocol. Nevertheless, we recommend that platelets function and bleeding time should be assessed in future iNO studies and patients monitored closely for coagulation and bleeding problems.

Although NO is a naturally produced signaling molecule with a short half-life (seconds), the indirect systemic effects of exogenous NO therapy should be considered. Inhaled NO is used as rescue therapy for severe hypoxemia in patients with Acute Respiratory Distress Syndrome (ARDS) [23]. Systemic reviews of ARDS patients receiving iNO rescue therapy suggest an association between iNO therapy and increased risk of renal dysfunction, especially at high cumulative-doses of iNO and in older aged patients (≥65 yr) [36,37]. Renal dysfunction in these trials was usually defined as an excess of creatinine level (2–3.5 mg/dl) or the need for renal replacement therapy. It is important to note that in a recent safety study of intermittent high-dose iNO (160 ppm) in CF patients, authors did not observe a significant increase in the serum creatinine level during iNO treatment or follow-up period and did not report any adverse event related to renal function [17]. It is plausible that intermittent iNO regimen minimizes the systemic side-effects of high-dose iNO compared to continuous iNO studies in ARDS patients. Nonetheless, as many concomitant medications in the treatment of CF patients have potential nephrotoxicity, we recommend monitoring renal function by measuring creatinine levels and creatinine clearance in future iNO studies.

Another systemic effect that should be discussed is the potential mutagenic activity of iNO following sustained exposures to high concentrations. NO has complex and conflicting effects in cancer. Chronic exposure to NO can mediate damage to DNA or hinder DNA repair mechanisms to promote tumorigenesis. However, NO production also acts as a marker for nitrosative stress in future studies.

Pulmonary function in CF patients has been closely associated with airway NO production, as patients with improved function show higher exhaled NO and sputum NO2/NO3 levels (NO by-products) [4,5]. Nevertheless, all NO-related AEs (5 out of total 25 AEs) were minor, resolved within 3 h, and patients continued to receive subsequent NO inhalation in all cases.

A potential side-effect of iNO treatment could be its effect on bleeding diathesis, even though the prior studies have yielded conflicting results. Several studies treating healthy volunteers with 30–80 ppm iNO for up to 30 min demonstrated limited effects on bleeding time and hemostasis and of little clinical significance [26–29]. While other investigators have reported significant inhibition of platelet aggregation or prolonged bleeding time in healthy volunteers or patients receiving iNO [30–35]. Therefore, one of the key exclusion criteria in our study was significant hemoptysis, defined as >30 ml blood in 24 h, in the previous month from enrolment. The hemoptysis events experienced during this study were minor and self-limited, most likely due to the intermittent NO inhalation protocol. Nevertheless, we recommend that platelets function and bleeding time should be assessed in future iNO studies and patients monitored closely for coagulation and bleeding problems.

Although NO is a naturally produced signaling molecule with a short half-life (seconds), the indirect systemic effects of exogenous NO therapy should be considered. Inhaled NO is used as rescue therapy for severe hypoxemia in patients with Acute Respiratory Distress Syndrome (ARDS) [23]. Systemic reviews of ARDS patients receiving iNO rescue therapy suggest an association between iNO therapy and increased risk of renal dysfunction, especially at high cumulative-doses of iNO and in older aged patients (≥65 yr) [36,37]. Renal dysfunction in these trials was usually defined as an excess of creatinine level (2–3.5 mg/dl) or the need for renal replacement therapy. It is important to note that in a recent safety study of intermittent high-dose iNO (160 ppm) in CF patients, authors did not observe a significant increase in the serum creatinine level during iNO treatment or follow-up period and did not report any adverse event related to renal function [17]. It is plausible that intermittent iNO regimen minimizes the systemic side-effects of high-dose iNO compared to continuous iNO studies in ARDS patients. Nonetheless, as many concomitant medications in the treatment of CF patients have potential nephrotoxicity, we recommend monitoring renal function by measuring creatinine levels and creatinine clearance in future iNO studies.

Another systemic effect that should be discussed is the potential mutagenic activity of iNO following sustained exposures to high concentrations. NO has complex and conflicting effects in cancer. Chronic exposure to NO can mediate damage to DNA or hinder DNA repair mechanisms to promote tumorigenesis. However, NO production also acts as a marker for nitrosative stress in future studies.

Pulmonary function in CF patients has been closely associated with airway NO production, as patients with improved function show higher exhaled NO and sputum NO2/NO3 levels (NO by-products) [4,5]. Nevertheless, all NO-related AEs (5 out of total 25 AEs) were minor, resolved within 3 h, and patients continued to receive subsequent NO inhalation in all cases.

A potential side-effect of iNO treatment could be its effect on bleeding diathesis, even though the prior studies have yielded conflicting results. Several studies treating healthy volunteers with 30–80 ppm iNO for up to 30 min demonstrated limited effects on bleeding time and hemostasis and of little clinical significance [26–29]. While other investigators have reported significant inhibition of platelet aggregation or prolonged bleeding time in healthy volunteers or patients receiving iNO [30–35]. Therefore, one of the key exclusion criteria in our study was significant hemoptysis, defined as >30 ml blood in 24 h, in the previous month from enrolment. The hemoptysis events experienced during this study were minor and self-limited, most likely due to the intermittent NO inhalation protocol. Nevertheless, we recommend that platelets function and bleeding time should be assessed in future iNO studies and patients monitored closely for coagulation and bleeding problems.

Although NO is a naturally produced signaling molecule with a short half-life (seconds), the indirect systemic effects of exogenous NO therapy should be considered. Inhaled NO is used as rescue therapy for severe hypoxemia in patients with Acute Respiratory Distress Syndrome (ARDS) [23]. Systemic reviews of ARDS patients receiving iNO rescue therapy suggest an association between iNO therapy and increased risk of renal dysfunction, especially at high cumulative-doses of iNO and in older aged patients (≥65 yr) [36,37]. Renal dysfunction in these trials was usually defined as an excess of creatinine level (2–3.5 mg/dl) or the need for renal replacement therapy. It is important to note that in a recent safety study of intermittent high-dose iNO (160 ppm) in CF patients, authors did not observe a significant increase in the serum creatinine level during iNO treatment or follow-up period and did not report any adverse event related to renal function [17]. It is plausible that intermittent iNO regimen minimizes the systemic side-effects of high-dose iNO compared to continuous iNO studies in ARDS patients. Nonetheless, as many concomitant medications in the treatment of CF patients have potential nephrotoxicity, we recommend monitoring renal function by measuring creatinine levels and creatinine clearance in future iNO studies.

Another systemic effect that should be discussed is the potential mutagenic activity of iNO following sustained exposures to high concentrations. NO has complex and conflicting effects in cancer. Chronic exposure to NO can mediate damage to DNA or hinder DNA repair mechanisms to promote tumorigenesis. However, NO production also acts as a marker for nitrosative stress in future studies.

Pulmonary function in CF patients has been closely associated with airway NO production, as patients with improved function show higher exhaled NO and sputum NO2/NO3 levels (NO by-products) [4,5]. Nevertheless, all NO-related AEs (5 out of total 25 AEs) were minor, resolved within 3 h, and patients continued to receive subsequent NO inhalation in all cases.
of intrinsic NO-resistant mechanisms in Mycobacterium, such as elevated myoehist, which can neutralize the effect of NO [12]. This could suggest that a longer duration of iNO treatment may be necessary to achieve a significant bactericidal activity in CF patients with chronic NTM lung infection. It is noteworthy to examine the transient burst in sputum M. abscessus DNA (rp08 gene detected by qPCR) during the first week of iNO treatment. While rp08-qPCR based quantification of viable M. abscessus in non-cultured sputum has lower sensitivity compared to CFU count (solid media) or time to positivity (liquid media) of cultured sputum, it can provide valuable information about M. abscessus DNA load in patient airways [19]. The sharp increase in M. abscessus DNA content in sputum could be attributed to the biofilm dispersal activity of NO [53–55], which results in the release of planktonic bacteria into sputum. It is tempting to speculate that prolonged iNO treatment, beyond 3 weeks tested here, could increase the susceptibility of NTM biofilm to antibiotics and achieve an improved bactericidal activity in CF airways.

The main limitation of our study is the small number of patients and the results should be interpreted with caution. Additional exclusion criteria should be considered in future studies. Careful monitoring of additional parameters such as creatinine and platelet function as a marker of bleeding time should be included. The small number of AEs observed in our study may be due to the low number of participants and short duration of treatment.

Taken together, in this pilot study, the delivery of high-dose iNO was found to be safe and well-tolerated; thus, it may provide additional benefit to CF patients infected with M. abscessus. The potential value of iNO as an additional novel anti-NTM agent is encouraging, considering the complexity of the current antibiotic treatment, the significant side effects, and the lack of long-term efficacy. Based on our findings, additional clinical studies in larger cohorts and increases in the duration of iNO therapy are recommended to elucidate whether NO can serve as a potential adjunctive therapy for M. abscessus lung infection in CF.

Conflict of interests

The following authors; Michal Gur, Moshe Ashkenazi, Yuval Geffen, Micha Aviram, and Ori Efrati have no conflicts of interests. Lea Bentur, the principal investigator of this study received from the sponsor, AIT Therapeutics Inc. funding for travel and accommodation in order to present preliminary data at international conference. AIT Therapeutics Inc. funding for travel and accommodation in order to the principal investigator of this study received from the sponsor, AIT Therapeutics Inc. during the trial. The data were collected by investigators and study staff and/or options in the company.

Funding statement

This study was funded by AIT Therapeutics Inc., Garden City, USA and Rehovot, Israel (sponsor). The sponsor worked closely with investigator in the design and project management of the study. The statistical analysis plan and the final analysis was performed by Medistat (Tel-Aviv, Israel). Trial monitoring was carried out by TCA Clinical Research Laboratories. Guidelines for the six-minute walk test. Am J Respir Crit Care Med 2002;166:111–7. The sponsor provided logistical support for inhaled nitric oxide treatments during the trial. The data were collected by investigators and study staff at each site.

Acknowledgements

We would like to thank K. Masarweh (Rambam Hospital), A. Dagan (Sheba Medical Center), Y. Av-Gay (University of British Columbia) for their support of this study. We are grateful to Mr. Mark Rimkus (AIT Therapeutics) for assistant with NO inhalation setup. We like to thank the AIT team including Rinat Kaloara, Meital Hatan, and Hila Confino for their assistance in coordinating the study. We are grateful to all the staff and departmental heads at Rambam, Tel Hashomer, and Soroka hospitals for their support of our study.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jcf.2019.05.002

References

