BACKGROUND

- Mycobacterium abscessus, an emerging multidrug-resistant nontuberculous mycobacteria (NTM) species with high prevalence in patients with underlying structural lung disease such as cystic fibrosis (CF) 1.

- There is an unmet need for treatment of NTM as current antibiotic therapies offer little long-term success 1.

- Nitric oxide (NO), a small lipophilic free radical, plays a key role as host’s first-line defense against various pathogens including mycobacteria 2. NO displays broad-spectrum antibacterial activity in preclinical models, including M. smegmatis (an NTM) 3,4.

- In this study, we investigate antimycobacterial activity of high-dose NO 250 parts per million (ppm) in vitro against various drug-resistant clinical isolates of M. abscessus.

METHODS

Bacterial Culture: M. abscessus strains were provided by the Microbiology Service, Department of Laboratory Medicine, National Institutes of Health. M. abscessus clinical strains B1 (smooth), B5 (smooth), B8 (rough colony) are multidrug-resistant serial isolates from sequential time points in a CF patient with worsening clinical status 5. M. abscessus strain MRD (rough) is a multidrug-resistant isolate from a patient currently enrolled in a compassionate use trial at the National Institutes of Health.

NO Exposure: A continuous horizontal-flow NO delivery device, previously described 6, was used to deliver NO at specific concentrations. M. abscessus isolates were inoculated at 10⁶ CFU/ml in 0.85% saline or artificial sputum 7 and treated with humidified medical air (control) or 250ppm NO for up to 10hr. Bacterial survival was assessed through quantitative microbial cultures on 7H11 agar and CFU analyses.

RESULTS

Fig. 1. Efficacy of NO in vitro delivery system was tested against Pseudomonas aeruginosa. P. aeruginosa were cultured at 10⁶ CFU/ml in artificial sputum (2ml, planktonic), and treated continuously with 200ppm NO for up to 10hr. Samples were plated on cetrimide agar to obtain CFU count. The values are an average of 3 independent experiments.

Fig. 2. Efficacy of NO against M. abscessus in resting state. Time-kill assays were performed at 250ppm and 400ppm NO against M. abscessus B1 cultured in saline (non-growing, resting state, 2ml). Bacteria were treated with NO continuously up to 10hr and sampled every 2hr to obtain CFU counts. Controls were exposed to humidified medical air alone inside the NO chamber.

Fig. 3. Susceptibility of M. abscessus clinical isolates to high-dose NO. A) M. abscessus B1 bacteria cultured in artificial sputum were treated with increasing doses of NO (160, 250, and 300ppm) for up to 10hr. B) Data showing effect of NO exposure on artificial sputum media pH levels in 10hr. C) Artificial sputum at pH 5.0 has minimal effect on viability and growth of M. abscessus B1, B5, and B8 inside control (air only) chamber.

Fig. 4. Antibacterial activity of 250ppm NO against multidrug-resistant M. abscessus clinical isolates. Time-kill curves show susceptibility of M. abscessus B1, B5 (smooth), B8 (rough), and MRD (rough) clinical isolates, cultured in artificial sputum, to continuous 250ppm NO treatment. All M. abscessus strains show susceptibility to NO treatment. The B5 strain time-kill curve showed ~5-log reduction in 10hr. The MRD strain only revealed ~1-log reduction in 10hr. Controls were exposed to humidified air alone inside the NO chamber.

CONCLUSION

- NO is an effective antibacterial agent in vitro against M. abscessus (in growth and resting state).

- Several multidrug-resistant clinical isolates of M. abscessus show significant susceptibility to 250ppm NO treatment (in 10hr).

- In future studies, we will assess NO activity against intracellular M. abscessus and its synergy in combination with currently administered antibiotics.

REFERENCES

Acknowledgement: Supported in part by the intramural research programs of the National Heart, Lung and Blood Institute and the Clinical Center, NIH and AIT Therapeutics.